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REVIEW ARTICLE 

Multiple-scattering theory of x-ray absorption: a review 
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SinCrotme Mesle, Padriciano 99, 'ltieste, Italy, and International Centre for Theoretical 
Physics. llieste, Italy 

Received 30 December 1991, in final form 16 July 1992 

AbrlracL We review the basic elements of the lheory of x-ray absorplion using the 
tools provided by the theory of multiple scattering. We fin1 use an approximate 
momentum space approach which gives a very clear physical insight where the final 
formulas expressing WAFS and XANES, i.e. the ~lmctures appearing in the absorption 
coefficient above the edge of a deep corelevel threshold. are given in terms of eigenstates 
of the photoelectron momenlum. We lhen review the c o m t  formalism, the curved- 
wave lheory, for which we need to work in angular momentum space. Simple graphic 
representations are given for the multiple-scattering function. 
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1. Introduction 

The history of the explanation of the. oscillatory structure appearing in the x-ray 
absorption coefficient of a complex molecular or condensed system, as a function 
of the x-ray energy above the edge of a core-level threshold, called errended x-ray 
absorption fine slrucrure (EXAFS), is long and varied. 

It was first recognized by Kronig and Petersen [l-31 that the explanation of 
the phenomenon lies in the .existence of final-state interactions (see [4, 51 for 
a history of the subject). The final state of the photoelectron is modified, as 
compared to the photoemission from an isolated atom, by the presence of an 
environment. The systematic quantum mechanical treatment, initiated by the seminal 
papers of Lytle, Sayers and Stern [6, 71, anticipated that the EXAFS technique can 
actually yield structure information on the material, particularly in situations where 
other techniques, such as diffraction, are not available. The photoelectron, in the 
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8270 L Fonda 

process of repeated scatterings from the atoms of the condensed system before 
going out of the material, collects information on the system itself particularly on 
the neighbours of the atom absorber. These papers produced a proliferation of 
contributions [8-42] (for reviews see references [43-501) who refined the physical 
interpretation of the process-including the possibility of understanding also the x- 
ray absopion near-edge sfrucfure (XANES) using the tools provided by the multiple- 
scattering approach [51-63fiand pointed out its wide applicability. By comparing 
theory with the experimental data, detailed information can be obtained on the local 
atomic environment, out to few (about 3.5-5) around the photoabsorber. For 
compounds, it is possible to  investigate the local order around each type of atom 
separately, by analysing the EXAFS spectra on each absorption edge. This atomic 
information is extracted without the need of an electronic structure calculation and, 
most important of all, for ordered as well as disordered systems. The sample may be 
a gas, liquid, solid (crystalline or amorphous), diluted in a solution, a living cell etc. 

Lately, there has been a great revival and enhancement of such a tool of scientific 
research, with the possibility of using intense brilliant sources such as synchrotron 
radiation accelerators. Applications now encompass almost all fields, in particular 
catalysis, chemistry, geology, life sciences, materials science, surface physics etc. 

In this article, we review the basic elements of the theory of x-ray absorption 
fine structure by using the tools provided by the theory of multiple scatteringt. In 
section 2 we prove in general the multiple-scattering formulas, relevant for our case, 
by employing the Green’s operator approach in the Hilbert space of the scattering 
states of the system. Section 3 contains technical details, useful for the evaluation of 
the multiple-scattering function. In section 4 we introduce an approximate momentum 
space formalism, in which the final formulas are expressed in terms of eigenstates of 
the photoelectron momentum. The perturbative expansion obtained gives a very clear 
physical insight into the rather complicated process of photoabsorption. In section 5 
we then treat the correct approach, which we call curved-wave fheory for which use 
is made of the angular momentum representation. Simple graphic representations of 
the multiple-scattering function are given for both formulations. In section 5 we also 
discuss briefly the full solution which one is able to obtain using computer programs 
[65-711 in order to describe XANES when the perturbation expansion fails to converge. 

2. Multiple-scattering theory of the photoemission process 

We shall consider the x-ray absorption from a material, a complex molecular or 
condensed system (liquid, amorphous or crystalline), and shall tune the x-rays at 
energies above the threshold for the excitation of a deep core level of a specific 
chemical element. Experimentally one determines pc,  the contribution to the x-ray 
absorption coefficient due to the excitation of the core level c. The coefficient pc is 
given by: 

t For completeness of information, it  must be said that for crystalline systems the lradilional approach is 
thal based on band-structure methods (see tor example [h4] and references therein). The applicability of 
these calculations is, however, limited to systems Wilh perfect clystalline order. Since any minor deviation 
from translalional symmelry requires an eXlenSion of band theory. Hence the atomic SlNClUTe is here 
an input rather than an inference. For a comparison belween band structure and mulliple-scatlering 
approaches see [S, 25, 331. 
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where n6 is the density of atoms with the core level c of concern and uc the absorption 
atomic cross section from this level. 

ks a function of the energy tiw of the incoming photon, in the region just before 
the threshold, uc presents a resonant structure which contains information about 
the binding energies, quantum numbers and multiplicities of low-lying energy levels. 
At the threshold, U, exhibits a finite jump, called the absorption edge (its analytic 
expression for hydrogen-like atoms is given, for example, in [72]), as a result of the 
Coulomb attraction experienced by the ejected photoelectron. The edge shows up 
also in elastic and inelastic cross sections already existing at that energy (see 1731 and 
references therein). 

Above the absorption edge, uc shows a marked fine structure, called XANES when 
near (usually up to 50 eV above the edge), and EXAFS when away from the edge and 
extending well beyond, usually up to loo0 eV above (some authors use the acronym 
XAFS to cover all the range). In contrast, for isolated atoms the absorption cross 
section does not show any marked oscillatory behaviour, decreasing smoothly as a 
function of the energy beyond the edge. XANES and EXAFS are then caused by the 
presence of the environment around the absorbing atom in the condensed material. 

The absorption cross section uc, apart from a background-in general slowly 
varying in energy in the region of interest, due to inelastic scatterings-can he 
identified with the photoemission cross section integrated over angles and summed 
over final spin and over the initial degeneracies of the completely filled core-level c 
(which we shall call the total photoemission cross section). 

In order to evaluate uc, we shall consider the photoemission T-matrixt, to be 
evaluated on the energy shell, to the first order in the incoming photon field: 

where p .  is the momentum operator of the j t h  electron and m its mass; A ( r j )  is 
the quantlzed radiation field (in the Coulomb gauge Vj . A ( v j )  = 0) evaluated at 
the position of the j t h  electron. 

The initial state vector is the product of the incoming photon state vector 11;) 
times the initial 2-electron atomic normalized bound state vector I@:')). The final 
state is given by the product of the photon vacuum 10) times the state I@?)) 
describing an emitted electron and the ionized ( 2  - 1)-electron atom in which a 
deep core hole witnesses the absorption of the initial photon. Due to the decrease 
in screening of the nuclear attraction, the electrons left in the ionized atom draw a 
little closer to the nucleus. 

A major simplification of the many-body amplitude (2.2) is obtained from the fact 
that it is possible to explain the main features of x-ray absorption through the change 
of state of a single electron 174, 75, 181. Use of the sudden approximation, within 
the framework of a Hartree-Fock-Slater treatment of the states describing the initial 
and the final atoms, enables the factorization of those states reducing (2.2) to the 
single-particle amplitude 

1 .  

t For the definition of the T-matrix and cross sections. I follow 1731. 
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The interaction is now effective only on the aclive emitted electron: 

H ,  = - ( e / m c ) A  .p  (2.4) 
and I$$-)) are now single-particle states. The vector I$,) represents the initial 

single-electron normalized bound state relative to the core level c. I$\-)) is the 
final single-electron scattering state as resulted from the interaction of the emitted 
photoelectron with 

(i) the completely relaxed (i.e. lowest-energy configuration of the passive Z - 1 
electrons in the presence of the core hole) ionized absorbing atom A; 

(ii) the neighbours of A in the condensed material. 

F" ~ ($y-l) lpl) , ) is the Z - 1-passive-electrons overlap integral. Its modulus is 
less than 1; therefore it correspondingly decreases the amplitude of the cross section. 
lFJ2 has normally values between 0.6 and 0.9 [21, 761. 

The single-particle approach (2.3) works nicely at energies away from the 
threshold, in the EXAFS region, where the active electron scarcely intermingles with 
the other electrons of the system. 

Close to threshold, in the XANES region, x-ray absorption from deep core levels is 
still dominated by single-electron transitions (at variance with soft x-ray absorption at 
the edges of shallow core-level excitations which is dominated by many-body effects); 
however, many-body effects appear. For example, up to about 10-20 e y  where 
the interaction of the photoelectron with the passive electrons becomes strong, the 
probability for the excitation or ionization (shake-upshake-off) of other electrons 
becomes sizeable. In experiments performed in this energy range, small threshold 
anomalies corresponding to these processes show up in the cross section (see, for 
example, [77, 781); the photoelectron cannot be considered as a 'spectator' of the 
relaxation process and may cause anisotropies in this process [79]; typical autoionizing 
many-body excited states may occur and produce resonant effects on the cross section 
[80, 811. 

The effects of these (low-energy) phenomena are correctly included in the many- 
body amplitude (2.2). Therefore, in applying the single-particle scheme (2.3) to  x-ray 
absorptions from deep core levels, we have to keep in mind that at energies close to 
the edge, equation (2.3) will yield some departures from the experimental data. 

For simplicity we shall deal only with spin-independent interactions so that our 
photoelectron can be considered as spinless. The generalization to include the 
photoelectron spin is, however, straightforward [2S, 42, 61, 621. Furthermore, we 
shall consider only elastic scattering from the relaxed ionized atom A and from its 
neighbours. The inclusion of inelasticities, of many-body effects such as electron- 
electron scattering, of the Auger and radiative decay of the core hole and of thermal 
vibrations is not trivial. Most commonly, one introduces proper damping factors in 
the final formulas to simulate their effect (the discussion on these points is postponed 
to section 5). 

In (2.3), the vector I$$-)) is a 'mathematical' state, an eigenstate of the total final 
state (Hermitian) effective single-particle electron's Hamiltonian H , ,  which satisfies 
incoming wave boundary conditions. It is connected to the 'physical' state I$?)), 
which obeys outgoing wave boundary conditions, through time reversal invariance 
(see, for example, [82], chapter 2.7): 

+(-)(k,,v) = I$'+'(-k,,')I* (2.5) 
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where hkl is the momentum of the photoelectron. 
normalized exactly to a three-dimensional Dirac &function: 
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The states l+(* l (k) )  are 

( $ ( * ) ( k ) l + ( * l ( k ' ) )  = h3(k - k ' ) .  

The total photoemission cross section is given by 

where mi labels the orbital angular momentum degeneracy of the core level c and 
the factor 2 represents the two electrons lying on the level ( Ec,  l ; ,  mi ) .  

Writing the final energy as E ,  = hzk5 /2m + constant, we can write 

d3kf = (m/hz)kf  d E l d R f .  

For the total photoemission cross section uc we therefore get 

0, = F~ x / d 3 k f  6 ( ~  - E l ) ~ ( ~ ~ - ) ~ ( ~ I ) " l ~ + ~ ) ~ 2  (2.7) 
mi 

where E = tiu + E, is the total initial energy, F1 = [2 (2~)~ /hc ] lF~1~  and 
( H , ) , , ,  = KlHr lL ) .  . . .  _ . . .  

Since I$$-),) is eigenstate of the Hamiltonian H , ,  belonging to the eigenvalue 
E,, we can write 

The quantity in round brackets appearing at the RHS is almost a resolution of the 
identity 

Jd'kl b+$))(+j-'I = I -  I + S ) ( + b t  
b u n d  s t a t e  

However, application of the operator a( E - H ,  ) eliminates the contribution of the 
bound states: 

6 ( E - H j ) l + b )  = 6 ( E - E b ) I $ ' b ) = O  

since E > E,. For uc we then finally get 

In order to evaluate (2.8), we write a( E - H,) in terms of the complete Green's 
function G defined by 

G = 1 / ( E +  ic - H , )  z P/(E- H , )  - i ~ 6 ( E -  H,) (2.9) 
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where the limit 6 -+ Ot is understood and P means 'principal value'. Introducing Gt, 
the Hermitian conjugate of the propagator G, we get 

& ( E - H , ) =  (i/27r)(G-Gt). (2.10) 

We finally obtain (here Im means 'imaginaly part of') 

(2.11) 
F 

0 =--1. 7T ~ I m ( ~ ~ l ( H ~ ) l " ~ ( ~ ~ ) " l l ~ ~ ) .  
m, 

As the photoelectron is emitted, it first feels the potential Ua of the ionized atom A 
in its fully relaxed state. It is then convenient to separate this contribution from the 
complete Green's function G. 

The Hamiltonian H, can be written as 

(2.12) 

where li is the photoelectron kinetic energy and C,#. U, is the sum of all the 
potentials exerted on the photoelectron by the neighbouring atoms. We deal with 
atoms embedded in an interstitial space of constant potential. This (muffin-tin zero) 
level determines our zero of energy. The atoms are supposed to be fully screened so 
that the photoelectron feels finite-range spherically symmetric non-overlapping local 
potentials U,. This is the so-called mufin-tin potential model. (Note however that 
all formulae in this section are valid irrespective of whether or not the potentials 
overlap.) 

We can write 

or, alternatively, the specular reflection of this: 

where G, is the Green's function belonging to the potential Ua: 

G, = l / ( E + i c - l i - U , )  

Substituting (2.14) in the right-hand side of (2.13) yields 

G = G ,  + G,T,,G, 

where 

(2.13) 

(2.14) 

(2.15) 

(2.16) 

(2.17) 
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We finally obtain 

0 =-- F1 E W&l( H,),"lG, + G,7-,,G,I( f f , )" lI+C) .  

The fiat term in the RHS gives the total cross section for the photoemission from the 
isolated atom A. The second term represents all the contributions to uc due to single 
and multiple scatterings suffered by the photoelectron in the material. 

The operator Ta,,, if it were not for the fact that G also contains contributiom 
from U,, would represent the T-operator for the complete scattering of the 
photoelectron from the environment of the atom A. The multiple scatterings instead 
contain contributiom from the rebouncings of the photoelectron from the absorbing 
atom A also. 

In order to evaluate Taa, let us consider the operators Tkj defined as follows: 

(2.18) 
A 

m. 

(2.19) 

For k = j = a, Tbj reduces to T.,. In (2.19), let us single out from G the 
contribution of the isolated atom N: 

(2.20) 

Using (2.20) in (2.19) we get 

Let us define the complete 7'-operator for the scattering of the photoelectron from 
the isolated atom N as 2,: 

2, = U" + U,G,U,,. (2.22) 

We see that the first two terms in the RHS of (2.21) contain a sum of t , ~ :  

T k j  = t ,  + u s , (  u m  + c UpG c U").  (2.23) 
n#k n#k m # j  p # n  m # j  
n f j  m#n 

The bracket in the RHS of (2.23) is just Tnj, while for U,Gn we can use the identity 

(2.24) U,, G, = t ,  Go 

where G, is the free-space. Green's function: 

Go = 1/(E + i t  - K) (2.25) 
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and Gn is linked to Gu as usual by 

G, = G u + G u U n G n = G , + G , U n G u .  

We then get for Tkj a very simple integral equation: 

T k j  = tn  + tnGUTn~ 
n # k  n # k  
n # i  

(2.26) 

Alternatively, one can easily see that the Ts also satisfy the integral equation that is 
the specular reflection of (2.26): 

(2.27) 

In the literature the following type of operators, called scaffering path operators [ S I ,  
have also been introduced: 

r q p  = t p s q p  + C tqGurmp r p q  = Vpq + rppmGutq. (2.29 
m#q m#q 

They are connected to our Tk, through the relation 

Th, = c rqp. (2.29) 
q # k  
P#J 

Introducing the second equation of (2.28) in the RHS of the first, we get 

rqp = tPaqp + tqGutp(l  - bqp) + tqGuTqPGotp (2.30) 

which for p = q = a reads 

raa = t ,  + t,GuT,,Got,, (2.31) 

Finally, (2.31) can be inverted to find Tan in terms of raa: 

T'. = Gilt;'( raa - t,,)t; 1 Go - 1  . (2.32) 

To find the analytic solution of the integral equations (2.26)-(2.28) is a rather 
formidable task. Formally, the solution of (2.28) is given by the matrix operator 

i = (1  - 52)-'ZP (2.33) 

where the matrix operators i ,  ZP and R are defined according to 

(?Iqp = r q p  (")pp = t P b B P  (R)qp  = tqGu(1- b q p ) .  (2.34) 
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If I( OW 11<[1 Q 11 for any normalizable vector Q of the combined scattering-state- 
atomic-site Hilbert space (we shall discuss this point again in section 5.3), then it is 
possible to  expand (1  - a)-' in the absolutely convergent geometric series: 

(2.35) 

The perturbative expansion (2.35) converges at high enough photoelectron energies, 
where the electron scattering is weak. Of course, wherever (2.35) fails to converge, 
the full solution (2.33) must be used. 

We are now in the position to write down a perturbative expansion in multiple- 
scattering terms for Taa. Just put the geometrical series (2.35) in (2.29): 

Taa = 'n + tnGU tm + $nGU $mGU 
n#o n#a m#n *#a m#n k # m  

m#a I.#* 

(2.36) 

Using (2.36) in (2.18), we see that the generic term of the multiple-scattering 
expansion of the total cross section has the following closed-loop structure: after 
emission from the atom A, the complete (in the field U,) propagator C, takes the 
photoelectron to the atom J ,  the electron is scattered there ( t j )  and gets propagated 
h free space ( C , )  to the atom IC . . . until from the atom N the electron propagates, 
with the complete Green's function C, ,  back to the atom k Each leg of the closed- 
loop connects only different atoms. The atom A itself may appear as an intermediate 
step of a closed loop. 

T,, can be written as: 

(2.37) 

where Ti:) is the contribution from an s-leg closed-loop, i.e. s - 1 rescatterings. 
We have therefore obtained an expression of the total cross section as a sum of all 

the possible multiple scatterings. The overlap of these terms with that representing 
the photoemission from the isolated atom A gives rise to the structures (XANES and 
EXAFS) observed in the absorption coefficient. 

Far above the threshold the scattering of the photoelectron is weak, so one 
can retain only the single-scattering term s = 2. At low electron energies, i.e. 
near the threshold, the scattering is strong; hence, in the energy region where the 
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perturbative expansion (2.35) still converges, one must also take into consideration 
multiple-scattering terms of higher order. 

Before ending this section, we would like to point out that the operator Taa, 
besides being the relevant operator for the description of all multiple scatterings in 
the absorption coefficient, is also responsible for taking into a w u n f  these processes 
in the photoemission differential cross section since it appears in the T-matrix T,-i. 

In fact, let us introduce the scattering state ($$-"A') from the isolated ionized 
atom A (Hamiltonian IC + Ua). For the state vector I$$-)) we can write 

, 

where G(-) is the incoming wave Green's function belonging to the (Hermitian) 
Hamiltonian E?,, which equals the Hermitian conjugate of G. The T-matrix (2.3) 
then reads as follows: 

T,-, = T:A_)( + h(+$-)(A)l u,,G(ffr)~ll$J (2.39) 
*#a 

where 

Introducing (2.14) for the complete Green's function G and using (2.17) we finally 
obtain 

which proves our statement 

3. The photoemission cross section and the multiple-scattering function xL,&,t  

We proceed to evaluate the total photoemission cross section uc. We now apply the 
dipole approximation, which amounts to substituting in (2.3) for (OJH,(li) 3 

the quantity [72]$ 

( H , ) , ~  + -i[hw/2(2?r)3]1'ZE. e? (3.1) 

where E is the unit polarization vector of the photon. 
Equation (2.18) then reads 

U, = - 2 h w ~ I F u 1 * ~ I m ( S ~ . I ~ . r [ G ~  + G,T',G,]~..TI$~) (3.2) 
mi 

t Fmm now on we drop the subindex f from the final eleclron momentum hk,. The energy of the 
photon remains hw. For the spherical harmonics we follow the nalalion of 1821, appendix to chapter 2. 
In parlicular, the phase convention is: YIrm(k) = (-l)mYl,-m(k), We shall use as much as possible 
the compound index L 
t For a pure electric quadrupole transilion, in the RHS of (3.1) replace (e.?) with (i /2)(kphOm.r)(c.r).  

( I ,  m). 
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where a = e2/hc .  For r .  rl+,) we write 

We need now to evaluate the free Go and the complete C, Green’s functions. We 
shall use the notation €or the eigenket of position used by the ‘observer J’, i.e. 
the observer who has placed the origin of coordinates at the centre of the atom J .  

For the free propagator we get (see pp 269, 298 of [83] where units ti = 1 are 
used): 

where 

Gol(r,  r’) = - i k ( 2 m / h Z ) j l ( k ~ < ) h j t ) ( k r > ) .  (3.5) 

T< indicates the smaller of r and r’, T> the larger. j , ,  n, and hit) 
j ,  + in, = [h?]. 
functions (see [83], p 38, and (841, p 437). 

hi’) = 
[hi-)] ’  are the usual spherical Bessel, Neumann and Hankel 

For the complete propagator we get (see [83], p 374) 

1 2m (-i)I 
Ga,(r,r’) = 4n hz krr’ q 5 l t ) ( k , r < ) f ~ + ) ( k , r > ) .  

q5it)(k, r )  is the physical wave function (note that our qbit) differs from that of [83]: 
+ i t )  = 4a4t)(New‘0n)) satisfying the boundary condition (regularity at the origin): 

?-U lim(kr)-’-l+~t)(/c, r) = 4rr/[f,(k)(21 -j- l)!!] (3.7) 

where f , ( k )  is the Jost function. q5j t ) (k , r )  appears in the expansion of + y ) ( k , r )  
in spherical harmonics: 

Outside the radius R ,  of the muffin-tin potential, $!t)(k, P )  is given by 

(3.9) 
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where 6y) is the phase shift produced by the potential U, of the relaxed ionized 
atom A. For large r (3.9) becomes 

From (2.5) one gets 

4 - ) ( k 7  7) = [+it)(k,  T)I* 

'and, using the fact that f l (k)  = Ifl(k)lexp(-i6y)), 

(3.10) 

(3.11) 

+{+)(k, r )  = e2'6!*)+i-)(k, r ) .  (3.12) 

f , ( + ) ( k , r )  is an outgoing wave eigenfunction (# ${+)(k,r)), which is irregular at 
the origin, determined by the boundary condition at infinity: 

Outside the potential f,(t)( k, r )  is just given by 

We now have all the elements that are necessary for computing uC. The cross 
section (3.2) is composed of WO terms. Let us first evaluate the first one that 
describes the cross section uiA) from the isolated atom A. 

The cross section aiA) can be obtained in a simpler way from (2.6), just 
substituting TE), for T,-i. The evaluation is straightfonvard and gives 

U!"' A Fz xx4a( ( (Yim, IYLYL.))') q \ y i m t ( e ) \  2M,(A) (3.15) 

where F2 = ( a m w / l 2 ~ ~ t i k ) l F ~ 1 ~  and M Y )  is given by 

I m, "9 

In our notations, the (Gaunt) coefficients (Y,\YL,YL2) are real. They are given by 
(use (A2.16) of [82]) 

KIYL)YL?) = J d f i  yt(n)~L,(fi)~L,(n) 
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They vanish for 1 + 1, + 1, = odd. In order to evaluate the sum in large brackets 
appearing in (3.15), consider the quantity. 

B L L , ( l i ,  1 1 )  = ( ~ , m , ~ , m , t ~ m ) ( ~ , m l I ~ , m , ~ , , , , , ) .  (3.18) 
m.mt 

The calculation of (3.18) is standard [ZS]. Using (3.17) we obtain 

x c c(lilIl; mi m,m)C( 1; 1,l’; miml m’) . (3.19) 

Here the sums over m, and mi collapse to the value 611,6,,, due to completeness: 

B L L , ( l i , l i )  = { ( Z i  + 1)(211 + 1) / [4~(21+ 1)])6~L,[C(li1,1;ooo)l2. (3.20) 

We see that (use the explicit expressions for the C-coefficienfs when one of the 
angular momenta is equal to 1, which can be found in table 2.3 of [82], appendix to 
ch 2): 

ml mi 

Finally, for the cross section dA) we get 

We would like to mention that in the literature use is often made of formulas 
simplified by choosing the polarization vector E along the z-axis; in such a case 
one can write: YIm,(€) 3 (3/4~)~’~6,, ,~, , .  

Let us now evaluate the second term of (3.2), the one that contains all multiple- 
scattering contributions to the cross section. In these terms, G, operates in 
expressions like (AIG,t, . . ., n # a, or the specular reflection of this. In our model 
of (non-overlapping) muffin-tin potentials, the physical wave function +it)( k, r< ) 
entering (T ]G,~T ’ )  will then be evaluated for r< lying inside the atom A, while 
f / + ) ( k ,  r) must be evaluated for r> inside the atom N .  T> therefore being outside 
the muffin-tin region A, for f / + ’ ( k ,  r) we can use (3.14). 

Using (3.6), (3.11). (3.12) and (3.14) for the total photoemission cross section, we 
finally obtain 

o c =  ~C4n ( Y ~ , ~ m , I ~ ~ ) ( Y L , t ~ m i Y L , )  
LL’ m.mimi 

(3.23) 
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where the so-called multiple-scattering function xL,,, contains all the contributions 
from the environment of the absorbing atom: 

x Id’?’  d’r”’ Yi(r’)h;+’( kr’) =(r’1Taa Ir”’), hi?)( kr’s)YL,(d”). 

(3.24) 

The first term in (3.24), i.e. i6,,,, gives rise to the cross section uiA)t. 
We see that the multiple-scattering function xL,L, is nicely factorized in the 

expression for the total photoemission cross section. Also, from (2.37), we see that it 
can be written as a sum of contributions from the various multiple scatterings: 

m 

x L , L ,  = i6LL, + x L , ~ .  (*) (3.25) 
r=2 

Tb end this section, we give the expression for the total photoemission cross section 
averaged over the incoming photon polarization vector. In this case one gets that 
only the diagonal elements of the matrices A4(A) and x contribute. After the trivial 
angular integration, the quantity to  be evaluated is BLL,( l i ,  1). From (3.20) we have 

B L L , ( ~ ,  1) = (3/4~)6~~,[1/(21+ 1)lKli + 1)6i,i,+i + ~ i 6 i , i , - i I .  (3.26) 

Hence the total photoemission cross section averaged over the polarization vector 
turns out to be 

unpolarized photon beam.. .(3.27) 

The average of uiA) is of course obtained from (3.27) by substituting 1 for Im 
Finally, we note that the relation between the multiple-scattering function and 

the absorption coefficient (averaged over E) is simplest for K-shell absorption. Using 
(3.27) with 1; = 0 we have 

(3.28) 

where we have defined the isolated atom background as piA) = n,dA). 
t An additional contribution lo (3.24) arises when one has incomplete screening of the core-hole (non- 
metals and molecules). Instead of placing V = 0 beyond the last atom muffin-tin potential, one surrounds 
lhe cluster with lhe Coulomb tail originated by the corehole (28. 51, 601. ModiAcations 10 (3.24) must 
also be inlroduced when the interstitial potential cannol be approximated by a Constant (as in the case 
of a charge density build-up along a bond) 156, 341. 
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4. The momentum space approach 

We need now to evalute the multiple-scattering function ~g!~,. We start in this 
section with an approximate approach which has the merit of giving a vexy simple and 
clear physical insight into the complicated problem of photoabsorption in condensed 
matter. I consider it of, so to speak, ‘pedagogical’ relevance. In its essence, it 
constitutes the finishing touch to  the theories, set forth to explain this phenomenon, 
based on the so-called small-atom and plane-wave approximations (see section I11 of 
[14], and [23, 241). The correct approach will be discussed in section 5. 

The approach starts from the perturbative expansion (2.36). Therefore, even at 
the outset, we can say that it will he appropriate only at energies not too close to the 
edge. As we shall see, due to the muffin-tin Structure of the potentials, all t-operators 
in (2.36) will appear evaluated on the energy shell. 

Let us first take into consideration the role of the free-space Green’s functions 
G,. The first term of (2.36) represents the contribution from single rescatterings, i.e. 
just one reflection from the  environment (no G, there). All the other terms represent 
contributions from multiple scatterings. In these latter terms the freespace Green’s 
function Go is always sandwiched between two tjs. Consider a typical grouping: 

where the propagator, ,(T‘IG,(T), is given by (3.4). The operators 1, and t,, standing 
of the right and left of G,, force r and T’ to lie where the (non-overlapping) muffin- 
tin potentials U, and U,,  respectively, do  not vanish. Accordingly, we replace IT - 2’1 

in the  denominator of (3.4) with the interatomic distance R,, between atoms P and 
Q, while for the phase at the numerator of (3.4) we use the expansion 

l ~ - ~ ’ l = l ~ p - ~ 9 - ~ 9 , 1 ~  R q , - ~ . R , , / R q P  (4.2) 

R ‘I, = R q - R p  p p = ~  p 9 = d - R q P  p = p p  - p , .  (4.3) 

where 

This approximation is sensible to  the extent that terms of the order of (a/R, , ) ’ ,  
with a < R,, the radius of the core of the atom, can be neglected. We shall quote 
this as the sma//-atom approximation. Note that in (4.3) the vector pj originates from 
the atom J and the vector R9, points from atom P to atom Q, as shown in figure 1. 

Figure 1. Tke vectors defining the Green’s function in cwrdinale represenlalion. 
joins the centre of the site P wilh the muffin-lin region Q # P. The Greek letter 
p always indicates a vector joining the centre of the Site 10 a point within the same 
muffin-lin region. 
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Let us define the vector k,, as 

k,, = kR,,/R,,. (4.4) 
Its modulus coincides with k while its direction is along the interatomic distance 
vector R,,. For (4.1) we get 

t,Got, = / d 3 p q  Jd’p, ts(pq)qeU-*‘PqCS ‘IP e-ih*p‘pp p(P ,kp  q #  P (4.5) 

where C = -( m/2xhz)  and we have defined a new electron propagation function: 

s ‘I, = eikRw I % P .  

IT‘), IQ,),. (4.7) 

(4.6) 
In obtaining (4.5) we have used on the p-side the identity p(rl =, (41 while on the 
q-side we have performed the substitution 

This procedure is proved as follows. Ir’) is used by the ‘observer P‘. If we want 
to relate the measurements of observer P‘with those performed by the ‘observer Q’, 
we need to take a space translation of the displacement Rpq obtained by application 
of the unitary operator (see [82], ch 2.3) 

DRqP = exp(iP.  R q p / h )  (4.8) 
where P is the total linear momentum of the system. We get 

= Dk..I.‘ -Rqp) ,  = Dk,.IP,),. (4.9) 

A moment reflection shows that substitutions of this type are performed once at each 
leg of the generic s-leg term of x t l L , .  Since P commutes with all the tj-operators, 
in an s-leg term of xg!L, we can collect together the resulting s translation operators 
in the unique expression exp( -iP . R/h). But we are dealing only with closed loops, 
so for us R = 0 or exp(-iP. R/h) = 1, and consequently the matrix element 
is left invariant by the substitutions (4.7). 

We now use the relation 

&k.pj = (24’” j ( ~ j  lk) (4.10) 

where Ik) is eigenstate of the photoelectron momentum belonging to the eigenvalue 
hk. Finally, using the completeness relations 

equation (4.5) reads 

tqGutP = ~ , l ~ q p ) ( 2 ~ ) 3 ~ ~ q p ( ~ q p I ~ p  4 it P. (4.11) 

Therefore, in the perturbative expansion (2.36), for a Gu sandwiched between a 1 ,  
and a l , ,  we can substitute the quantity 

G,, + (2x)3csqp P P 
with S,, given by (4.6). 

For the l-operators there are three possibilities: 

(4.12) 
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(i) t ,  is sandwiched between two Go, as in the grouping . . . t ,  Got,GUt, . . . 
(ii) t p  appears in a position like . . . Gutplr“’),, p # a, or its specularly reflected 

(iii) 1, appears sandwiched between two eigenkets of position o(r’(tp(r‘’’)o. 

Let us consider each of these cases in detail. 
Case (i). As an application of (4.11), we trivially see that in a typical grouping Of 

t ,  * ~ ~ q p l ~ p l ~ p m ~ .  (4.13) 

Reading from right to left, the t,:matrix element (kqplt,Ikp,) describes on the 
energy shell an electron which, having been shot from the atom M ,  gets Scattered 
elastically from the target atom P with destination atom Q. The momentum of the 
electron is always directed along the vector joining the two atoms ( k p m  before and 
kqp after the collision with P) and its modulus is equal to k .  

Cuse (ii). This occurs when tp appears at the end or in front of Taa. Consider 
then the resulting ‘tail’ of (3.24): 

( q  # P .  P # 7 4 ;  

expression; 

the type . . . t,G,t,G,t, . . . for t, we can substitute the matrix 

. . . tqGot, Jd3r’(r‘),hl;C)(kr‘)Yll,(r’) (4.14) 

which, using (4.11). reads 

In the evaluation of (4.15), we must develop (k,,Jt,(r’),,  into a momentum space 
T-matrix on the energy shell. 

First of all, we can substitute the matrix (kqp~tp(pp)p for (kqpJtp lr ’ ) ,  using 
(4.7). Secondly, the vector r’ in (4.15) connects the centre of the atom A with the 
region where the muffin-tin potential U,  does not vanish. In the spirit of the small- 
atom approximation, we then substitute E,. for r‘ in the argument of the spherical 
harmonic YL,. We then apply the so-called plane-wave upproximution (PWA), which 
consists in taking the asymptotic expression of hi?)( krl) for large kr’ and writing 
Izr’ T bpo . r‘. We get (now T’ = p, + E,,,): 

i’’flh(,+) I (  kr() eikT’/krl e e%n-’ /kRpa 

- - eik...heikR.. / k R  PO : - (l/k)eik.m.PIS pa ’ (4.16) 

Let us discuss the validity of the PWA for our case. Actually, the relevant quantity to 
consider, as a function of the energy, is the phase of the Hankel function In fact, it is 
the phase that is responsible for the building up of the interference pattern observed 
in the absorption coefficient. We have (see [84], pp 439, 365) (here z = kr’): 

ii’+l (+) hp ( 2 )  = IMv(z)IexP[iip~(z)l 

= z[i+ qv+ 1)/2z2 + o ( z - ~ ) I  (4.17) 

(4.18) z)[l+1’(1‘+1)/222+o(z- 4 )] 112 . 
lMi,(z)l cz (11 
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The second term in square brackets of (4.17) is hounded by (note that 1’ is k e d  here: 
1’ = l i  i 1): 

V(1’ + 1)/(22’) < l’(1‘ + 1)/[2kz(R,,, - RW)’]. 

This means that we can neglect the correction to the phase when 

E >> h’l’(1‘ + 1)/[4m( RPa - &)‘I. (4.19) 

Equation (4.19) defines the energy range of validity of the PWA. Below the energy 
defined by (4.19), our momentum approach fails and one must resort to the correct 
curved-wave theory of section 5. 

Use of (4.16) in (4.14) gives 

Using now (4.7) and the completeness of the set of eigenkets of position { I p J p ) ,  we 
finally get for (4.14), i.e. for the ‘tail’ of (3.24). 

. . . ~ - ~ ~ ~ q ~ ~ q p ~ ~ ~ ~ ~ 3 ~ ~ q p ~ ~ q p ~ ~ p ~ ~ p o ~ ~ p a ~ ~ ~ ~ 3 ~ 2 ~ ~ i ~ ~ - ~ ~ i ’ ~ ~ ~ ~ ~ p a ~ ~  (4.20) 

and similarly for the corresponding ‘front’ of (3.24) 

~ - ~ ~ ~ ~ , ~ ~ , , ~ ~ - ~ ~ ‘ l ’ ~ ~ i ~ ~ ~ ~ 3 ’ 2 ~ , , ~ ~ d p l ~ p I ~ p ~ ~ ~ ~ ~ ~ 3 ~ ~ , , ~ ~ p p  It,. . . (4.21) 

where we have used the fact that: Y,(-R) = (-)‘YL(R). 
Case (iii). This is the case of a single scattering of the photoelectron from the 

atoms surrounding the absorbing atom A. Using the very same procedures as above, 
we immediately get 

By collecting the various results obtained, we see that the structure of the multiple- 
scattering term x?:~,  representing the generic s-leg closed loop is very simple: we get 
a sequence of s free electron propagators Sbj with s - 1 interaction matrix elements 
(k?, Itqlk,,) interposed in between them. 

It 1s convenient to introduce the scattering amplitude f, defined through the 
momentum space tq-matrix on the energy shell: 

where B,,,, the angle formed by the vectors Icy, and le , , ,  represents the co-latitude 
angle of scattering from the site Q. The scattering amplitude does not depend on the 
azimuthal angle since our muffin-tin potentials have been supposed to be spherically 
symmetric. The squared modulus of the scattering amplitude f, is exactly equal to  
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the differential cross section for the elastic scattering of the photoelectron from the 
atom Q: 

do/dR = If(29)1'. (4.24) 

In terms of phase shifts, f( 29) is given by 

4?r , . 1 
k f(s) = ~ Y ~ ( h f ) - e ' 6 ' s ~ n 6 1 Y L ( k i )  = - c ( 2 1  + 1)Pl(cos29)ei6tsin61. (4.25) 

k t  L 

The general form of the multiple-scattering function xg!L, can then be best 
understood in graphical form. We represent one term of x(LdlL, with a closed- 
loop s-leg diagram in which a line corresponds to  the free propagation of the 
electron from an atom to the next and a comer stands for the scattering of the 
electron from an atom. The factor in front of the s-leg diagram (see (3.24)) includes 
(2m/h2)k exp(2i6Y)) where exp(2i6:*)) is of course representative of the scattering 
of the photoelectron from the potential U, of the ionized atom A, The initial and final 
legs (see (4.20)-(4.21)) contribute (-1)(21r)3kk-2[(-i)'YL(Rau)l*[(-i)''YLr(Rpo)]; 
the other s - 2  propagators give [ ( 2 ~ ) ~ C l " - '  while the S- 1 transformations 1, + f, 
yield a factor [-ti2/(4~2ni)]"-'. Collecting all the results, we finally obtain the rules 
to construct a generic closed-loop diagram as shown in table 1. 

Table 1. Correspondence between diagrams and multiple-scattering terms in lhe 
(approximate) momenlum space approach. 

. .  A 
IO R I" P 

Using the recipes given in table 1, we can easily write down the multiple-scattering 
function for the generic closed-Imp diagram A, P, Q, R, . . ., T ,  U, V, A (read 
equations from right to left!): 

x L , L ~  (3) = - 4n CeZi61* ' [ ( - i ) 'y , (~  ,, )I'S,,~,(~...)S,,~,(~P,~,)S~~ . . . 
IOOpS 

k 

' ' ' s,, fq ( f l v q p )  s,, fp(flqp, 1% K-V'%, ) I .  (4.26) 
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This s-leg term is characterized by the propagator's contribution 

eikRat f R, 4. .  . R, R,, R, + R, + . . . + R,. (4.27) 

If we Fourier transform (4.26) on the momentum k, we see that the transformed 
s-leg amplitude 

(4.28) 

will peak close to T = R,o, = foul closed-loop lenglh (the exact position of the peak 
depends of course also on the other energy-dependent factors present in (4.26)). This 
is the first information that one can obtain from (4.26). Another general consideration 
is the following: take (3.27), i.e. the average over the polarization vector. The angular 
factors in (4.26) yield 

1 d % ( d  = W J d k  exp(-ikr)x%(k) 

where, in our notation, T - B,,, is the angle under which A 'sees' the atoms P and 
V. In particular, for K-edge absorption we have a vanishing of the amplitude x L L  
when this angle is T / Z .  

Let us consider in some more detail the cases s = 2, 3, 4. 
Single-scattering case s = 2 the fradirional W F S .  The diagram is shown in figure 2. 

It consists of only two electron lines (an initial and a final one) and one corner. We 
get 

x(2) L,L' - - -e2!6, k ~ ~ ~ - ~ ~ ~ ~ ~ ~ ~ ~ p ~ l * ~ ~ p ~ p ~ ~ ~ p ~ ~ ~ p ~ ~ ~ - ~ ~ " ~ ~ ~ ~ ~ p ~ ~ l .  (4.29) 
4T , (AI 

,#a 

Since B a p 0  = T ,  the relevant amplitude fp is evaluated at the backscattering angle 
?i. 

0 OA 0 0 

A P 
- 0 

A P 

0 0 0 0 
Flgure 2. A closed-loop diagram lor 8 = 2 (FXAFS). Figure 3. A closed-loop diagram for 8 = 3 
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Let us see the expression one gets for absorption from a K shell. In that m e  
we have I i  = 0, so I = 1' = 1. Taking the polarization vector along the z-axis for 
simplicity we also have m = m' = 0. We get 

where for the backscattering amplitude f p ( r r )  we have written 

f p ( r )  = I fp(~) lexp( i@p) .  (4.31) 

Obviously, the pth term of (4.30) vanishes when the angle between the bond direction 
Rpa and the polarization angle e is rr/2. 

For unpolarized photons, using (4.29) and (3.27), we get: 

unpolarized photon beam (4.32) 

where N i  is the number of identical atoms on the ith shell at the distance Ri from 
the absorber (coordination number). With due changes to take into account the effect 
of inelasticities and disorder, which we shall treat in section 5, equations (4.30), (4.32) 
have been the most used in applications. 

The double- and triple-scarrering cases s = 3, 4. Let us now write down the 
expressiom for ~ g ! ~ ,  and x ! ! ~ ,  that involve two and three scatterings, respectively, 
from the environment of the absorbing atom A, and which then contain information 
on second- and third-nearest-neighbour distances from A. The diagrams to be 
considered in these cases are shown in figures 3 and 4. Using the recipes of table 1 
we easily get 

4rr Zi6@) X L p  (3) - - - k e I [ ( - i ) ' y L ( ~ ~ q ) l * . s ~ q ~ q ( l J ~ q p )  
s f a  P#* 

Pic9 

~ g ! ~ ,  gives a correlation of three atoms in space. Therefore, even though it is in 
general smaller than the single-scattering contribution (it involves a longer distance 
travelled by the photoelectron and finite-angle weak scatterings (see for example [14], 
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a 1 A P o\:o A P 

0 0 0 0 
Figure 4. Closed-loop diagram for 8 = 4. 

figure 5)), it provides us with the possibility of measuring, for example, the bond 
angle 4,,, under which the atom A sees atoms P and Q [23, 27,411. 

In the case of $), we also have the possibility, shown in the second diagram of 
figure 4, in which the absorber A appears as an intermediate step of the closed loop. 

The EXAFS spectra get enhanced when two scatterers are in alignment with the 
absorber A, an effect quoted as ‘shadowing’ in the literature [14]. This is, e.g., the 
case of FCC lattice structures. The relevant diagrams are shown in figure 5. The total 
contribution X(shadow) = - ~ ( ~ 1  + ~ ( ~ 1  + Xi4) of these diagrams is given by 

(4.35) 

The enhancement comes from the fact that the electron-atom scattering amplitude at 
forward engles f(0) may be quite large. The result is that the amplitude of the wave 
coming in to the atom Q, after being scattered from the collinear atom P, can be 
larger than that of the wave that has experienced no scattering from P. A focusing 
effect occurs and the global contribution + x ( ~ )  of these multiple scatterings 
dominates over the contribution x ( ~ )  of the single scattering from the shell that the 
atom Q belongs to. 

Equations (4.33) and (4.34) contain information on XANES, the structure appearing 
in the absorption coeficient at low photoelectron energy. However, the approach of 
this section fails at low energies (see (4.19)) and a discussion on this point must be 
performed in the framework of the correct cuwed-wave theory of section 5 and its 
full (non-perturbative) solution. 

5. The curved-wave theory 

We now review (section 5.1) the correct approach to multiple scattering, which will 
be called curved-wave theory [8, 13, 14, 25, 291. In section 5.2 consideration will be 
given to the treatment of inelasticities and disorder. In section 5.3 the full solution 
will be discussed. 
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Figure 5. The shadowing effect. 

5.1. The formalism in angular momentum space 

The formalism must he developed in the angular mOmenNm representation. We shall 
obtain a final formula for (3.24) where all the $-matrix elemena contained in Ta,, 
will be written in the form 

p(~lyLl~pl~~~~L~)p. (5.1) 

They will all appear evaluated on the energy shell, since the muffin-tin potentials 
occupy disjoint regions of space with constant interstitial potential. The state IjlYL)p 
is defined, for fixed klm, relative to the site P. It is the product of a spherical 
harmonic (with angles originating from P) ,  and a spherical (regular in P) Bessel 
function. Its coordinate representation ist 

(TI~IVL) = ji(kr)YL(r). (5.2) 
.. 

We must transform all waves of the type hjt’YL, outgoing from the site P (and 
therefore singular in E‘), in waves of the type (5.2) converging to the site Q (and 
regular there). This is readily done by using the expansion in angular momentum 

t The normalization and momentum representalion of these slates are 
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space of the free Green's function (as usual, the limit e -+ O+ is understood): 

,(rlGolr'), = d3k' eik'.R,,eik'.p,e-ik'.p, C (2:)3 J I C ' ~  - k2 - ie 

(5.3) 

where the integral J (  k) is given by 

J ( k )  can be integrated in the complex k'-plane. We shall do this supposing 
p, E r < r' IR,, + p,( which, in our model of non-overlapping muffin-tin 
potentials, means p, + p, < R,,. 

For the Bessel function j ,  we write j ,  = (hi+' + h;-))/Z. We next transform 
the part of the integral containing hi-)  into an integral over the real negative k'-axis 
using the reflection properties j l ( - z )  = ( - ) ' j i ( z ) ,  h$-)(-z)  = ( - ) ' h y ) ( z ) .  We 
get 

J ( k )  in (5.3) is actually multiplied by the Gaunt coefficient (YL,YLJYL,) which iS 
non-vanishing only if 1 + 1, + 1, = even. We therefore obtain 

We can perform the integral (5.6) in the complex k'-plane by closing the integration 
contour with an asymptotic semicircle in the upper half k'-plane, where h, 3 i , 3 ~ ,  
vanish exponentially because of the condition p, + p, < R,,. we get 

(t)' ' 

J (k)  = ( i /2 )xkhjt ) (kR, , ) j l~(kp, ) j , , (~p, ) .  (5.7) 

For the free Green's function we finally obtain 

2m 
P (TIGIJIT'), = k* E j , ~ ( k P , ) Y L , ( p , ) s L . , L ~ ( R ,  - Rq) 

L,L, 

x [ j , * ( k Q Y L q ( P , ) ] '  P, + P, < R,, (5.8) 

where the propagator g is given by 

gL P q  ( Rp9 ) = -i E 4ni'+'p-'* ( YLp YL IYL~) YL ( Rp9 hit)( &., ). (5.9) 
L 
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Comparing this expression with (3.4), (3.5) evaluated for r < r‘ and identifjing the 
terms of the expansion in YLp(pp), we get the expansion of the wave hjt)Yi: 

h!~)(k~’)Yip(~’) = c i g L ~ L ~ ( R p ~ ) ~ ~ ~ ( k ~ q ) Y i ~ ( p q )  pq < R p q .  (5.10) 

%king the complex conjugate of (5.10) and exchanging k into - k ,  we get also the 
expansion of the wave hj+’YL: 

L. 

Equations (5.10), (5.11) yield the desired expansion of the wave outgoing from the 
site P in terms of waves coming in to the site Q. Let us now construct the multiple- 
scattering function xL,L,  following the lines of thought in section 4. 

For the free Green’s function, using (5.8), we have 

Let us now discuss the t-operators. 
Case (i). t p  is sandwiched betwe.en two G, as in the grouping . . . t ,  G,,t,G,t,,, . . .. 

As an application of (5.12), we immediately see that for t p  we can substitute the on- 
energy shell matrix element: 

Case (ii). This is the case when 1, appears at the ‘tail’ or in ‘front’ of (3.24). 
Using (5.10), (5.11) and (4.7) we easily get 

~ d ’ ~ ’ Y ~ ( r ’ ) h j ’ ) ( k r ’ ) , ( r ’ ~ t , . .  . = ~ i g L L , ( R . , ) , ( j f , Y L , ~ I l p . .  . . (5.15) 
L. 

Case (E). In this case one considers the term (3.24), treating only one rescattering 
from the environment Use of (5.10), (5.11) and (4.7) gives immediately 

In order to write down the generic matrix element of (3.24). we redefine the on-shell 
t-matrix elements. Because of the spherical symmetry we can write 

h2 
Yz ( k) - rrmk (klt , Ik‘)  = Yr. (k’ ) 

L 
(5.17) 



(5.18) 

(5.19) 

Introducing diagrams again, by collecting the results (5.12)-(5.19). we obtain the very 
simple rules shown in table 2 for the construction of an s-leg diagram. 

The multiple-scattering function x ~ , ~ ,  has then the form 

xL,L,  = ibLL, - e Z i 6 1 * ' [ g L L ~ ( R a p ) l ~ ~ ~ L , [ ~ ~ , ~ ~ ( R p a ) l  (5.20) 
q#a L.L, 
p#a 

or, using (5.19) for the site A, the alternative expresion 

rqP is given by the expansion 
L , L P  
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The operator T& appearing in (5.20)-(5.22) is more useful, for computational 
purposes, than the operator T,, of (3.24), since, unlike Taa, its subindices qp actually 
refer to single-site &operators, one ( t q )  standing to the left and one ( 1 , )  to the right 
of its expression. 

The perturbative expansion (5.22) is to be compared with the expansion obtained 
in the (approximate) momentum space approach, of which (4.26) is the generic s- 
term. We see that, even though expressions (5.20)-(5.22) are simple, their physical 
content is more obscure due to the more complicated structure of the g-propagators 
as compared with the  S-propagators. Therefore, the momentum space approach is 
more useful when one wants to reach a simple understanding of the phenomenon 
of x-ray absorption in condensed systems. In contrast, if one wishes to compare (in 
the framework of the considered single-particle formulation combined with dipole 
approximation and (elastic) muffin-tin potentials) theory correctly with experiment, 
one must resort to the so-called curved-wave approach (5.20)-(5.22). 

Let us consider in detail the case of single scattering when the average over the 
polarization.vector is performed. Using (5.20) with T;'''~ = trp6qp6LqL,  and the 
explicit expression (5.9) for the g-propagators, we get 

(5.23) 

Using now (3.20) and the fact that 

we obtain the exact curved-wave single-scattering formula: 

where I :  is given by (5.19) and H p ( l , l p )  by 

From the exact expression (5.24) we can reobtain the approximate EXAFS formula 
(4.32). We just use the PWA for the Hankel function appearing in (5.25): 
ifl+lh{:l(kv) eik'/kr and the following completeness relation for the Clebsch- 
Gordan coefficients: 
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which holds since C(I1,1,;OOO) is different from zero only if I + 1, t 1, = even. We 
get 

(5.27) 

Using now (4.25) for ZP = R and (5.19), we see that the expression in large brackets 
on the RHS is just - k f , ( T ) .  We finally obtain 

which coincides with the momentum space equation (4.32) (unpolarized beam of 
x-rays). 

Let us discuss the validity of the PWA in this case. In fact, at variance with 
the momentum space approach (see (4.14) and the following), here the angular 
momentum i,, which the Hankel function belongs to, is not fixed. In (5.25) we sum 
over all possible values of I, satisfying the triangular relation with angular momenta 1 
and 1, (with the only restriction that I, + 1 + 1, = even). Now 1 is b e d  ( 1  = l i  i l) ,  
but 1, is the angular momentum scattered from the atom P, and we have to  judge 
its range of values. 

Consider first high energy: one expects significant scattering contributions from 
atom P up to I;= = k a ,  where a is the atom core radius. The evaluation of the 
relative correction to the phase of the Hankel function in (5.25) then goes as follows 
(take the second term in square brackets of (4.17)): 

Therefore, in the high-energy region, the smaller (a/R,,)'  the more appropriate it 
is to forget about correcting the phase and the better the PWA works. As discussed 
in section 4, to hold good the PWA must be applied together with the small-atom 
approximation. 

In the low-energy region, we cannot apply the 1r-argument  given above; there 
are only a few (low) values of 1 ,  that count and we must then require 

E >> h21,(1, + 1) / (4mR; , )  

which is an energy bound similar to (4.19). 

the PWA failst and one must resort to the exact curved-wave theory (5.20)-(5.25). 

t For single scatteling, an improved sphm'col-wove opp'admarion [31, 35, 401, obtained by relaining in 
(5.25) the first correction to the phase and to the mcdulus of the Hankel function has yielded an excellen1 
agreement wilh lhe experimenlal data down to 20 eV abme the K edge of Cu. 

(5.30) 

Therefore, as already seen in section 4, at energies close to the absorption edge, 
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5.2. Inelasticities and disorder 

The multiple-scattering function ~ t i ,  must still be corrected for all kinds of 
inelasticity and disorder. These corrections amount to overall dampings of each 
term of the perturbative expansion and can therefore improve its convergence. 

Inelasficities. All types of inelasticities, electron-elenron scattering and finite 
core-hole lifetime are usually taken care of by the introduction of a damping factor. 
This can be understood as follows: phenomenologically, the above processes, being 
absorptions from the elastic scattering channel, are described by adding an imaginary 
part -ilVIl to the Hamiltonian Hi. lb first approximation, V,/h is equal in 
magnitude to the sum of the inverse lifetimes of the core hole and of the active 
electron. If we suppose. that V, is constant, we get a very simple expression for the 
new complex electron momentum: 

IC-  [ (2m/~2)(E+ilV,1)] ' /2  - IC+imlV,l/hZk (5.31) 

where E is the (real) photoelectron kinetic energy. In the RHS, k is the real part of 
the photoelectron momentum. The important correction for the multiple-scattering 
function (5.20)-(5.22) applies to the energy dependence of the g-propagators. All 
Hankel functions have a small imaginary part in their argument, and this then 
provides a damping of the term. This is seen quite nicely in the S-propagators 
of the momentum space approach which yield, in fact, a damping exponential: 

smaii VI 

s,, (eikR../R 'IP )e-Rw/X (5.32) 

where A, to be interpreted as the mean free path of the electron, is given by 

X = {Im[(2m/h2)(E+i~V,~)]'/2}-1 m a i i  - V, hzk/mlV,l. (5.33) 

This argument roughly takes into account the effect of inelasticities. In reality, this 
is not so easy; a complete many-channel treatment of the problem is in fact in order 
[63]. For simplicity, researchers maintain the mean free path damping argument, 
multiplying the X(')-function by a correcting (energydependent) factor v ( s )  < 1. 
One has also to keep in mind that X may not be isotropic. 

The presence of damping 'penalizes' long closed-loop diagrams such as those 
involving single scatterings from distant coordination shells (unless shadowing is 
present), or multiple scatterings with many legs. This is nicely seen in the S- 
propagators, which become 

77(a )eikRsme- R d  A /R ,R,  . .  .R, R,,, 5 RI + R, + . . . + R, .  (5.34) 

The peaks in the EXAFS and XANES Structures, besides being reduced in amplitude 
due to the escape of flux, are broadened due to the appearance of complex momenta 
(to see this in the final formulas, do not make the approximation for V, small!). 

Disorder. As far as disorder is concerned, from quantum mechania we know that 
the distance R,, between two generic atoms P and Q cannot be fixed. Besides, 
in molecules or condensed systems the position of an atom fluctuates because of 
thermally induced vibrations. More disorder is found in solutions, amorphous systems 
and glasses. 
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What happens in practice is that, with the absorption process being faster than 
any molecular motion, an instantaneous fixed atomic distribution is observed; the 
experimenter collects several ‘snapshots’ over a time long compared with the vibration 
periods, and therefore measures a time average of this distribution. 

We shall discuss here the case of single scattering, s = 2; for general treatments 
see [30, 391. For simplicity we shall discuss the approximate EXAFS formula (4.30). 

The time average is profitably replaced by an average of (4.30) over all spatial 
configurations of the bond distances Rpa. We write 

R,, = RbU,) + U,,, (5.35) 
where uPa 
R,, by retaining only terms to first order in U,,,: 

U -U,. Here U, is the j t h  atom displacement vector. We then expand P 

(5.36) 
The average of (4.30) affects the sine function most of all. We shall evaluate the 
remaining part of the EXAFS function (including the damping factors exp(-R,,/X)) 
at the equilibrium positions R,, = RrJ. We make the further approximation of 
averaging, using a Gaussian distribution, only over the variable u = U,,, . RbO,)/Rr!, 
neglecting the effects of atomic vibrations orthogonal to the bond direction Rpa. 

Defining the phase A p  = 2kRbU,) + 2 6 y )  + a,, the evaluation of the average of 
the sine function appearing in the pth-atom term of (4.30) is straightforward: 

1 2 .  
+m 

sin(2ku + A,)e-Yz/Zu: du = ecZk “.sin A,. (5.37) 1 

The variance U: is of course temperature dependent and is interpreted [16, 451 
as [ups . RbO,)/R(dh)IZ, i.e. as the mean square relative displacement along the bond 
direction. The damping exponential exp(-2k20$) is usually referred to as the Debye- 
Waller factor (this is improper; see [45]). 

: The single-scattering EXAFS formula (4.30). corrected for inelasticities and 
disorder, is then finally given by 

x sin(2kRbU,) + 2 6 y )  + P ) e - 2 R ~ ~ A e - 2 k 2 0 ~ .  (5.38) 

Equation (5.38) is the most commonly used in applications. As thoroughly discussed 
in many papen (see reviews [43-SO], a great deal of information can be extracted 
from (5.38) from comparison with experimental data, using the methods of Fourier 
transform and filtering, about the local atomic arrangement around the absorbing 
atom. In particular, one can obtain atomic structure quantities such as bond distances 
(with accuracies as good as hO.01 A), coordination numbers and mean square 
displacements. 

Some attention must be paid to the origin offhe energy scale. Due to the subtleties 
of the preedge region in the absorption of photons from a complex molecular or 
condensed system, one cannot usually decide (within a few eV) on the position Of 
the absorption edge. The energy origin is then treated as a free parameter in order 
to obtain the best fit with the experimental data. 
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5.3. The full solulion 

As already pointed out, electron scattering becomes strong at low energies so, as we 
approach the absorption edge from above, more and more terms of the perturbative 
expansion are needed to describe the behaviour of the cross section. In general, the 
EXAFS (high-energy) region, where only single scatterings are relevant (as pointed out 
at the end of section 4, in the case of shadowing, multiple scatterings are also relevant 
in the high-energy region), merges into the W E S  region where multiple scatterings 
become important. Then, very close to the edge, because of the non-convergence of 
the multiple-scattering series, one needs to use the full non-perturbative solution. 

Let us consider this point in some more detail. The perturbative expansion (5.22) 
can be summed. Define the matrices: 

( r ) : : ~ ,  = r L q L ,  9 P  ( q L P  = tY*%p6L*L, ( g ) &  = t l - 6 g p ) 9 L q L , R R q p . .  

(5.39) 

Using (5.39) in (5.22) yields immediately the matrix equation 

r = 2 + t g r  (5.40) 

which is easily solved for r:  

r = ( l - t g ) - I t  = ( t - l - g ) - l .  (5.41) 

This is the  complete (non-perturbative) solution of our problem expressed in the 
combined angular-momentum-atomic-site discrete Hilbert space. 

The operaton r& introduced in this section, via the expansion (5.22), are just 
the on-shell angular momentum representatives of the r-operators discussed at the 
end of section 2. The link is provided by 

r i : L q  = (2m/fiZ)kp(ji.YLp trpqIjiqyLq)q. (5.42) 

Therefore (5.21), (5.22), (5.40), (5.41) correspond to (2.32), (2.351, (2.28), (2.33), 
respectively. 

At this point a comment on the absolute convergence of the perturbative 
expansion (5.22)/(2.35) is in order. The expansion (5.22) is written as 

(5.43) 

Let us diagonalize the matrix Ii t g :  IC,, = BliB- ' ,  where of course the matrix 
B also diagonalizes the inverse matrix appearing in (5.43): B ( l  - k-)-'B-I = 
(1 - BIiB-'- ' .  

The geometric series C;=p=oIi" converges absolutely if the series Cr=p=,(KD)n 
does. The diagonal matrix A',, has for diagonal elements just its eigenvalues A,. The 
general criterion for the absolute convergence is t h e n  to require that all eigenvalues 
A, be of modulus less than 1: 

MaxlA,I < 1 .  (5.44) 
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The eigenvalues A, of li, are of course the eigenvalues of IC E t g .  They are energy 
dependent, so the energy axis is divided into regions where (5.44) does or does not 
hold. These regions are obviously system dependent. 

We emphasize that dampings due to inelasticities and disorder when properly 
introduced, will help the convergence of the perturbative expansion. 

The big asset of (5.41) as compared with (2.33) lies in the appearance of discrete 
matrix multiplication for the on-shell matrix elements rather than continuous (space 
or momentum) integrations. This allows computation of the full solution (5.41), by 
properly truncating the dimension of the matrices. 

In the literature [65-711 one can find computer codes devised to solve this 
truncated problem. The calculation is performed on a cluster of a t o m  for a finite 
(system-dependent) number of angular momenta. The dimension of the cluster is 
determined by the maximum round-trip time of flight of the electron compatible with 
the decay of the photoelectron itself and of the core hole. Usually, the cluster is 
divided into concentric shells of atoms, with the absorbing atom A at the centre. 
The multiple-scattering equations (5.41) are solved first within each shell, and then 
between the shells themselves and the atom A [65, 711. This procedure has the 
advantage of replacing the inversion of a very large matrix with a number of smaller 
inversions, saving on computer times. 

With these full-solution calculations, one is able to enter into the energy region of 
XANES in which MaxlA,I 2 1, where the perturbative expansion does not converge. 
They are useful also if MaxlA,I is less than but close to 1, in which case the 
convergence of the series is slow. If MaxlA,I << 1, then the series converges rapidly, 
intrashell multiple scattering is not important and one can compute only the first few 
terms of the expansion instead of the full solution At high enough energies, the 
electron-atom scattering becomes weaker and weaker, and one is then allowed to 
consider (apart from the case of shadowing) only single scatterings (EXAFS region). 
Eventually, at extremely high energy, one is left only with the atomic absorption 
(3.15). 

Use of the full-solution computer codes in the XANES region yields information 
that is unobtainable from EXAFS, such as data on bond angles and local geometries. 
Calculations of XANES can distinguish between different models of local St~uCtuIe, 
similarly to electron diffraction (LEED) determination of surface structures [58]. 
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